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We derive a simple approximate analytic solution for the driving field that will generate a desired target
vibrational wavepacket in a diatomic molecule. This solution is valid for arbitrary population transfer from
the initial to the final electronic states. Analytic solutions to the control problem are possible when the control
field is of shorter duration than the characteristic time scale of the system being manipulated. For target
states that are localized wavepackets, our technique yields multiple solutions for the control field. We describe
a procedure to choose from the set of solutions one that achieves both the target state and population transfer
with high accuracy, for a large class of target states. The fidelity of each solution is tested by comparing the
state obtained from a direct numerical integration of Schro¨dinger’s equation using the analytic solution with
the specified target state.

I. Introduction

The manipulation of fundamental constituents of matter at
their most basic level has long been an important goal of
many branches of science. In the recent past, several experiments
have shown that it is possible to create chosen quantum states
of atoms1,2 and molecules,3-7 and to characterize them
completely.8-11

These experiments are in some ways the culmination of a
decade’s research into the central problem of quantum control.
Two approaches have been suggested to quantum control:
coherent radiative control,12,13 in which two or more cw fields
are used to interfere different pathways to the final target state;
and optimal control,14-19 which searches for the optimal pulses
that best steers the system to the chosen target state. These two
schemes have been successfully implemented, for example, in
controlling molecular dissociation,20-23 carrier dynamics in
semiconductors,24-26 product ratio in chemical reactions,6,27-29

state-selective vibrational excitation of molecules,30-32 and
wavepacket dynamics in the gas5,33-38 and condensed phases.39,40

In optimal control theory (OCT), a cost functional is
postulated and the shape of the field is varied to maximize this
functional. This functional contains information about the target,
which may be the state of the system, and relevant penalties or
physical constraints, such as the requirement of a finite pulse
energy. This procedure usually leads to a set of highly nonlinear
coupled partial differential equations. These equations must be
solved iteratively, starting from an initial guess for the driving
field, until eventually the field converges to a solution after a
number of iterations. In the weak-response regime, it is possible
to find analytic solutions for the driving field from these
equations.41 The nonlinear strong-response regime, when sig-
nificant population transfer from the initial to the final state is
specified, has only been dealt with numerically.34,37,42

Despite the success of OCT in predicting control fields,
numerical methods usually tend to obscure the physics of the
problem. For example, it is usually very hard even to just

understand why the control fields, obtained with OCT, have
the shape they do. This motivates us to seek an analytic solution
to the control problem in the strong-response regime. Such a
solution is important for developing an understanding of the
physics in the strong-response regime of excitation, and in
particular to deconstruct the final shape of the control field.
Also, as recently pointed out by Zhu and Rabitz,43 in some cases
only a good estimate for the control field is necessary. These
may be used, for example, as inputs to learning procedures that
are implemented experimentally. Zhu and Rabitz describe a
general noninterative algorithm which yields an approximate
semianalytic solution for the control field; evaluation of the
control field depends on the numerical solution of Schro¨dinger’s
equation for the wave function.

An alternative approach to solving the control problem
involves solving Schro¨dinger’s equation analytically in a regime
that takes advantage of some of the known physical dynamics
of the situation. Recently, we derived an approximate analytic
expression for the driving field that generates a specified radial
wavepacket in Rydberg atoms.44 We showed that by imposing
the duration of the excitation pulse to be shorter than a Kepler
period, the driving field so determined works extremely well
for arbitrary population transfer to the Rydberg series.

In this article, we extend that method to the case of diatomic
molecules. We show that a similar approximate analytic solution
can be found for the field that will generate an arbitrary
vibrational wave packet in homonuclear diatomic molecules.
As we will show, this approximate control field is evaluated
directly from the target probability amplitudes, and it holds well
even in the strong-response regime. The feature of molecules
that is different from atoms, so far as this problem is concerned,
is that the ground electronic state is itself a manifold: there are
many vibrational levels in each electronic state. Population can
be trapped in these vibrational levels via Raman-like transitions,
limiting the amount of population that can be transferred from
the ground to an excited electronic state. The key to obtaining
a good solution is to choose among the many possible solutions
one that is long enough to avoid such population trapping, and* Corresponding author. E-mail: walmsley@optics.rochester.edu.
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yet, that is still short enough that the discreteness of the system’s
level structure is not operative.

Even though we will discuss the technique with respect to a
diatomic molecule, it could in principle be extended to a variety
of systems consisting of a ground and an excited manifold of
states, of the type shown schematically in Figure 1. Many
quantum systems have at least part of their structure of this
type: the internal degrees of freedom of atoms and molecules,
interband transitions in quantum-confined semiconductors, the
center of mass of motion of trapped ions and atoms, to name a
few. It is a simple matter to determine if the system is
controllable, using our method, once its spectrum and coupling
matrix are known. The spectrum may represent the states
corresponding to several degrees of freedom of the optically
excited particle, and to that extent, some control should be
possible for multidimensional systems. In any case, it is possible
to determine from this information what range of the Hilbert
space of the system may be accessed using this technique.

This paper is organized as follows: in section II, we derive
the differential equations governing the time evolution of the
probability amplitudes of the vibrational-electronic states; in
section III, we discuss population trapping in the ground state
and how it can be avoided; we derive an analytic solution for
the driving field in section IV; we present the numerical results
in section V; and finally, we conclude by discussing the possible
applications of this method in section VI.

II. Time Evolution of the Probability Amplitudes

The sort of systems we are trying to control has an energy
level structure of the kind shown in Figure 1. Each energy level
within the upper (excited) manifold is connected to the levels
in the lower (ground) manifold by time-dependent interaction,
but no direct interaction is allowed between different levels
within each manifold. In the case of a diatomic molecule driven
by an external optical field,E(t), the two manifolds correspond
to molecular vibrational-electronic states connected by dipole
transitions.

The goal is to find the electric field that will create a target
wavepacket, centered atj ) νj, in the excited manifold starting
from an initial state in the ground manifold.

We start by writing the state of the system at some arbitrary
time t in terms of the unperturbed eigenstates of the molecule:
|Ψ〉 ) ∑n)0

N an(t)e-iωgn(t-t0)|g,n〉 + ∑j)0
M bj(t)e-iωej(t-t0)|e,j〉, where

|g,n〉 and|e,j〉 are the ground and excited vibrational-electronic
states, respectively;N and M are the number of vibrational

eigenstates supported by each of the potentials; andωg0, the
eigenfrequency of state|g,0〉, is defined to be equal to zero.
We assume fort e t0 thatbj(t) ) 0, andan(t) ) δn0. That is, all
the population is initially in the ground vibrational-electronic
state. The equations governing the time evolution of the
probability amplitudesan(t) and bj(t) are then found directly
from Schrödinger’s equation: (ip)∂|Ψ〉/∂t ) Ĥ|Ψ〉.

The simple two-manifold model of Figure 1 applies to the
excitation of an electronic-vibrational transition in a molecule,
if rotations are ignored. The Hamiltonian describing the interac-
tion of the diatomic molecule with the external classical field
E(t) can be written as

In the above equation, the first term in the right-hand side (RHS)
corresponds to the bare adiabatic Hamiltonian that governs the
field-free evolution of the system. The second term is the
interaction Hamiltonian, corresponding to dipole transitions
excited by the electric field. Such a Hamiltonian model for
wavepacket excitation is very common in the literature.34,38,45

The electric field, linearly polarized along the dipole moment
d̂, is written asE(t) ) E0[f(t)e-iωL(t-t0) + c.c.]. With f(t) ≡
|f(t)|eiφ(t), then|f(t)| is the dimensionless slowly-varying ampli-
tude of the field,φ(t) is its phase, andωL is the carrier frequency.
We takeωL ) ωeνj, andE0 ) 1 V/m. Except for the constraint
f(t e t0) ≡ 0, the form off(t) is not prescribed initially.

Applying the rotating wave approximation, we then find a
set of coupled differential equations for the probability ampli-
tudes:

whereΩnj ≡ 〈n,g|d̂|e,j〉E0/p, andδj ) ωej - ωL is the detuning
for each transition.

Substitution of the formal integration of eq 3 into eq 2 gives

Here, ênm(t - s) ≡ ∑j)0
M (ΩnjΩmj

/ /Ωnνj Ωmνj
/ )e-iδj(t-s) is an

electronic “response” function for the transition|g,n〉 f |e,j〉.
It can be seen that the response function is an anharmonic series
whose terms have an amplitude proportional to the Franck-
Condon factors connecting pairs of levels in the ground state
via transitions to the upper state. Forn andm ) 0, the response
functionê00(t - s) consists of a series of impulses of decreasing
amplitude and increasing duration, centered at approximatelys
≈ t - kT (with k ) 0, (1, (2, ...; and T) 1/νe ≡ 2π/(ωe1 -
ωe0) being the vibrational period of the excited electronic state).
It is a general characteristic of such series that they have a
maximum ats ) t, whose width decreases as the number of
terms in the series increases. Figure 2 shows a graph of a typical
functionê00(t - s), in this case, for the iodine molecule. It has
a strong narrow peak centered ats) t, smaller and longer peaks
at s ≈ t ( 2T, and small short-period oscillations everywhere
else.

Figure 1. Model system to be controlled. The states within the ground
manifold, g, are labeled by the quantum numbern; and states within
the excited manifold,e, are labeled by the quantum numberj. The
sought electric fieldE(t) is assumed to be resonant with ag f e
transition.

Ĥ ) p(∑
n)0

N

ωgn|g,n〉〈n,g| + ∑
j)0

M

ωej|e,j〉〈j,e|) - d̂‚E(t) (1)

ăn ) if*( t) ∑
j)0

M

Ωnjbj(t)e
-i(δj-ωgn)(t-t0) (2)

ḃj ) if(t) ∑
n)0

N

Ωnj
/ an(t)e

i(δj-ωgn)(t-t0) (3)

ăn ) -Ωnνje
iωgn(t-t0)f*( t) ∫t0

t
ds f(s)∑

m)0

N

Ωmνj
/ e-iωgm(s-t0) ×

am(s)ênm(t - s) (4)
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If h(t) is an arbitrary function with compact support between
0 e t - t0 e T (that is,h(t) is nonzero only inside this interval),
then to a good approximation

whereη0 ) νe ∫-T/2
T/2 ds ê00(s). An important requirement on

h(t) for eq 5 to hold is that it should not have any structure that
is short in duration compared to the response functionê00(t). In
this case, the small oscillations seen in Figure 2 average out to
zero when performing the integration in eq 5. The center impulse
in Figure 2 is the important feature ofê00(t) here: it picks out
the value ofh(s) at s ) t. To a very good approximation, the
electronic response function behaves like Dirac’s delta function.
In the case of a harmonic manifold, the variousδj are evenly
spaced, andη0/νe ≈ 1 because the response functionê00(t)
resembles very closely a series of evenly spaced delta functions
(this result is known as the Poisson sum formula46). Depending
on the anharmonicity of the excited electronic state, the
requirement thath(t) be restricted to one vibrational period can
be considerably relaxed (e.g., as for the iodine molecule).

However, forn, m * 0, ênm(t - s) does not in general exhibit
the same features seen inê00(t - s). The generalization of eq 5
for arbitraryn, m is an approximation that must be checked for
each system.

The complexity of the eigenstate spectrum will clearly
determine whether the time scales of the electronic response
function are appropriate for determining the control field
analytically. The general requirements are that a large number
of states in the excited manifold be accessible from each state
in the ground manifold and that the coupling matrix elements
should vary slowly as a function ofn andm.

III. Ground State Depletion and Population Trapping

The short response-function approximation could be used to
greatly simplify eq 4 if, throughout the excitation, the population
remained in the ground state, that is,am*0(t) ≈ 0. However,
due to the large bandwidth of the short driving pulses, population
may be transferred back down from the excited state to the other
ground vibrational levels via impulsive stimulated Raman
scattering.47,48 Population returns to the lower states with just
the right phase so that further ground state depletion is inhibited,
and is then trapped in the ground electronic state. A similar
problem arises in the ionization of Rydberg atoms.49,50

Such Raman-like transitions were studied in some detail by
Dubrovskii et al.50 who derived conditions on the pulse duration
and profile under which population trapping could be avoided
when ionizing a Rydberg atom. Generally speaking, population
trapping occurs when the driving field is switched on too fast,
quickly going from the weak-response to the strong-response

regime. In the weak-response regime, the initial Rydberg level
experiences an increasing rate of ionization with increasing
intensity, while in the strong-response regime, this rate tends
to decrease with intensity. At the boundary of the two regimes,
the decay rate goes through a maximum. Population trapping
is avoided by slowly turning the pulse on so that the pulse
spends more time around that point of maximum ionization.
When the pulse goes into the strong-response regime, and
population trapping begins to dominate, most population has
already been ionized to the continuum.

A similar result for strong-response excitation of molecules
appears in quite a different context. Cao et al.51 showed that by
chirping a pulse, a molecular “π pulse” could be designed,
leading to an almost complete population inversion between two
electronic states of a diatomic molecule. They also observed
that shorter pulses failed to accomplish such an inversion, with
population remaining trapped in the ground electronic state after
excitation. Their explanation of this phenomenon centered on
a wavepacket picture of the excitation dynamics. The similarity
between ionization of Rydberg atoms and excitation of mol-
ecules comes from the fact that the excited localized state of
the molecule takes at least one vibrational period to “notice”
the discreteness of the excited state. Up to this point, the excited
manifold looks just like a continuum and the molecular
dynamics of dissociation and vibration remains identical.

Considering both arguments, we postulate that if the driving
field is long enough to avoid trapping in the lower manifold,
but still shorter than one vibrational period, ground-vibrational
levels other thanm ) 0 will remain unpopulated throughout
excitation. This approximation must, of course, be checked after
the fact, but this is a simple forward integration of Schro¨dinger’s
equation. In deriving an analytic solution, we takeam*0 ≈ 0 in
eq 4. Then, using eq 5, we arrive at

where

is proportional to the pulse energy up to timet. Here,R0 ≡
Ω0νj/νe.

Note that no assumption about the shape off(t) has been
made. We assume only that the driving pulse is long enough to
avoid population trapping, but no particular value is assigned
to its duration. Because the exact shape off(t) depends on the
target wavepacket (not yet specified), an estimate (such as the
ones derived by Dubrosvkii50) on how long the driving pulse
has to be in order for eq 6 to hold cannot be made at this point.
If the driving field turns out to be so short that eq 6 is not a
good approximation, that will be reflected on the field’s inability
to drive the system toward the target state with good fidelity.

It is important to point out that in arriving at this result, no
approximation was made regarding the strength of the field
beyond the constraint that the field should not be so strong that
the ground state is depleted significantly during the duration of
the electronic response functionê00(t-s) (and of course, that
the two-manifold model itself remains valid at all times).
Nonetheless, we do allow the ground state to deplete over the
duration of the control pulse itself. This is in fact how we define
strong-response excitation. Equation 6 indicates that no Rabi
cycling of the population between the ground and excited states
can occur during the first vibrational period. This is because
quantum interference suppresses the transfer of population from

Figure 2. Electronic “response” functionê00(t - s) for the B state of
I2. M ) 55 states were included in the sum.

∫-∞

t
ds h(s)ê00(t - s) ≈ 1

2
(η0/νe)h(t) (5)

an(t) ≈ {exp[-η0G(t)], if n ) 0
0, if n * 0

(6)

G(t) ≡ (1/2)(νe|R0|2)∫t0

t|f(t)|2 ds (7)
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the “bright” state, created in the excited manifold, back to the
ground state. In a wavepacket picture, the localized state that
is excited by the pulse does not complete an entire period of
oscillation during the time that the driving field is nonzero; there
is no possibility that the end of the driving pulse can cycle
population from the initially excited part of the wavepacket back
to the ground state.

The requirement of a pulse width shorter than the vibrational
period means the excitation is nonadiabatic. The process we
describe is in the regime of quasi-impulsive excitation, and not
at all in the regime of adiabatic following.51

IV. Driving Field

In the weak-response limit, since the population in the ground
electronic state does not change appreciably during excitation,
the driving field can be found easily by directly integrating eq
3 and then taking its inverse Fourier transform. In the more
general case of significant ground state population depletion,
the driving field can still be found directly from thegiVen set
of target amplitudesbj

(T) (with ∑j)0
M |bj

(T)|2 ) ∆, ∆ being the
target depletion) for the desired wavepacket at some target time
τ, when the field is again zero.

Substitution of eq 6 back into eq 3 yields at the target time
τ:

Here, we setbj(τ) ) bj
(T) and definedB(t) ≡ ∑j)0

M (Ω0νj/Ω0j)*
bj

(T)e-iδj(t-t0). Becausef(t) is limited, by construction, to one
vibrational period, the integration limits in eq 8 could be
extended to(∞.

As before, if a functionh(t) has compact support between 0
and T, then

whereη ≡ νe∫-T/2
T/2 ds ∑j)0

M eiδjs.
Using the above approximation in eq 8 yields

At first glance, eq 10 looks like a transcedental equation for
f(t). Sincef(t) enters the RHS throughG(t), one might expect
that this equation could only be solved numerically. However,
it turns out that this is not the case. As we show next, we can
solve for the dynamics ofG(t) first, and substitute it back into
eq 10 to evaluate the field. Taking the derivative ofG(t) (defined
in eq 7), we obtain the resultĠ(t) ) (1/2)(νe|R0|2)|f(t)|2.
Substituting eq 10 into this equation yields

It is straightforward to integrate eq 11 forG(t), arriving at

From eq 6, the ground state population at timet is

∑n)0
N |an(t)|2 ) e-(η0+η0

/)G(t). If we require population to be
conserved at all times, so that∑n)0

N |an(t)|2 + ∑j)0
M |bj(t)|2 ) 1

for all t, then at the target timeτ, ∑j)0
M |bj(τ)|2 ) [(η0 +

η0
/)/2|η|2]νe∫t0

τ |B(s)|2 ds. Because of the Franck-Condon fac-
tors in the definition ofB(t) and the anharmonicity of the excited
manifold, in general the excited state population∑j)0

M |bj(τ)|2
will not be equal to∆, the target depletion. The amplitudes
bj(t) (and similarly,an(t)) need to be renormalized. We define
ø ) ∆/∫t0

τ |B(s)|2 ds so that∑j)0
M |bj(t)|2 ) ø∫t0

t |B(s)|2 ds, and att
) τ, the proper depletion is achieved. Equation 12 then
becomes: exp[-(η0 + η0

/)G(t)] ) 1 - ø∫t0

t |B(s)|2 ds, which
can then be substituted back into eq 10 to evaluate the field.
Because this is an inverse problem, conservation of population
is not automatically guaranteed when substituting eq 6 into eq
3: The RHS of eq 8 is not properly normalized with respect to
the LHS, and population conservation must be introduced
explicitly.

The field that generates the target distributionbj
(T) in the

excited electronic state is then found to be

From eq 13,f(t) can be evaluated directly from the target
amplitudes, thus completely determining the driving fieldE(t).
In the case of molecules with weakly anharmonic electronic
potentials, eq 13 can be simplified even further by observing
that η ≈ η0 ≈ 1.

Equation 13 is one of the major results of this paper and it
represents a prescriptive solution for creating a target wave-
packet in diatomic molecules, for arbitrary population transfer.
If the target wavepacket is well localized, the functionB(t)
consists of a series of impulses of decreasing amplitude that
gradually broaden into one another. The more anharmonic the
excited state is, the longer these impulses are, and the more
they overlap. It is clear from the weak-response solution
(obtained from eq 13 by lettingø f 0) that each of the isolated
impulses contains a complete specification of the target wave-
packet. In the weak-response regime, any of these impulses can
be used in eq 13 to determine the driving field. However, in
the strong-response regime, the only impulses that will work
are the ones that yield a pulse that is long enough to avoid
population trapping in the ground electronic state. Of course,
these considerations restrict the set of possible target wave-
packets to those for whichB(t) has this quasi-periodic structure.
Because of theΩ0j

-1 factor in the definition ofB(t), these
possible targets are those for which the probability amplitudes
lie within the states accessible via a Franck-Condon transition
from the initial vibrational-electronic state.

In practice, one chooses a particular impulse fromB(t) by
choosing a value fort0. Assigning a value tot0 the moment the
pulse switches on has no real physical meaning since in the
laboratory there exists no absolute time origin. However, the
choice of such an origin is implicit in the definition of the
electronic response functionê00(t) (and similarly in eq 9): the
central peak ofê00(t) is located att ) 0. Furthermore, eqs 5
and 9 assume the nonzero portion of the driving field to be
located between 0 and T. Choosing a value fort0 simply brings
a particular impulse ofB(t) into this interval. Similarly, the value
of τ is arbitrary. The physically meaningful quantity is the delay
between the turn on off(t) and the target time:τ0 ≡ τ - t0.
This is the time after the driving pulse has switched on that we
expect the excited amplitudes to converge to the target distribu-
tion.

Our technique for designing an electric field for generating
prescribed wavepackets in diatomic molecules can then be
summarized in a five-step recipe:

B(t) ) iΩ0νj
/ ∫-∞

∞
ds f(s)e-η0G(s)[∑

j)0

M

e-iδj(t-s)] (8)

∫-∞

∞
ds h(s) [∑

j)0

M

e-iδj(t-s)] ≈ (η/νe)h(t) (9)

f(t) ) i(ηR0)
-1eη0G(t) B(t) (10)

Ġ(t) ) [(νe/2|η|2)|B(t)|2]e(η0
/+η0)G(t) (11)

e-(η0+η0
/)G(t) ) 1 - [(η0 + η0

/)/2|η|2]νe∫t0

t|B(s)|2 ds (12)

f(t) ) i(ηR0)
-1 B(t)

(1 - ø∫t0

t |B(s)|2 ds)η0/(η0+η0
/)

(13)
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1. EvaluateB(t) from the target amplitudes.
2. Select a section ofB(t) by choosing an appropriate value

for t0.
3. Determine the driving field for the target using eq 13.
4. Check the field by numerically integrating eqs 2 and 3.
5. If population trapping occurs, go back to step 2, and choose

the next longest impulse ofB(t).
The above recipe is the second major result of this paper.

Together with eq 10, they describe a procedure for calculating
the driving field that will generate a desired wavepacket in a
diatomic molecule, and avoid population trapping in the ground
electronic state.

To avoid many runs through this recipe, one should start with
the longest section ofB(t) that is still constrained to one
vibrational period. Of course, there is no guarantee a solution
will be found for arbitrary states. SinceB(t) must have no
structure, of significant amplitude, shorter thanê00(t), solutions
cannot be found for arbitrary states. For instance, a wavepacket
consisting of half the population in the eigenstates at the extreme
of the Franck-Condon transition will not be achieved with high
fidelity. Of course, there is no guarantee that iterative methods
will achieve high fidelity either.

V. Numerical Results

To illustrate the method of solution described in the previous
sections, we now turn to the excitation of prescribed states in
two molecules of different degrees of vibrational anharmonic-
ity: the A state of K2 (weakly anharmonic) and the B state of
I2 (strongly anharmonic).

In these examples, the weak-response regime is specified by
a target depletion of∆ ) 1%; that is, 1% of the electronic
population of the initial state is transferred to the final state.
For the strong-response case, this depletion is∆ ) 99%.

A. Potassium Dimer.All the population was set to be initially
in the lowest vibrational level of the X state of the potassium
dimer. For simplicity, we ignored the dependence of the
electronic dipole moment with internuclear distance, and as-
signed to it a value of 11.4 Dsthe value at the Franck-Condon
region.52 The frequenciesωej and the Franck-Condon factors
for the X and A states were calculated from the potentials of
ref 53.

We chose as test cases two prototypical localized states that
exhibit both classical and quantum features.

The first of these test cases was a localized, vibrational quasi-
coherent-state wavepacket centered atνj ) 10 in the A state.
Here, the target amplitudes were taken to bebj

(T)e-iωejτ0 )
{∆[νjjexp(-νj)/j!]}1/2 with j ) 0, 1, ...,M andτ0 ) 2T. Figure
3 showsB(t) for this target distributionsstep 1 of our five-step
recipe. We chose the impulse ofB(t) corresponding tot0 )

-7.2Tsstep 2. This is the longest section still constrained to
about one vibrational period, thus a good candidate to avoid
population trapping in the ground electronic state.

The driving fields, determined from eq 13, are shown in
Figure 4a for both small (1%) and large (99%) ground-state
targetdepletionsstep 3. A closer inspection of Figure 3 reveals
ripples inB(t) not seen in Figure 4a. This is because each section
of B(t) used in evaluating the corresponding driving fields was
filtered to remove high-frequency components prior to being
substituted in eq 13. As will be discussed next, not only did
this filtering not alter the ability of the driving field to generate
the wavepacket, but it also allows for temporal shapes that are
more convenient to be reproduced in the laboratory. Such
robustness to small changes in pulse shape has also been
observed previously by others.34

Note that the shape of the field (although not the pulse energy)
in the strong-response case is not radically different from that
in the weak-response regime, and the differences make good
physical sense. In the strong-response case, the dynamics are
easily understood from the following argument: By the time
the trailing edge of the pulse arrives at the system, the ground-
state population is greatly reduced from its initial value, and
there is consequently less absorption than at the leading edge
of the pulse. Therefore, the pulse must be more intense at the
trailing edge in order to be able to pump whatever population
is left in the ground state up to the excited electronic state. Also
noteworthy is the fact that the temporal phase of the driving
field is exactly the same in both regimes of excitation. That is
because the phase is determined only by the choice of target
amplitudes, throughB(t), in eq 13.

The validity of these approximate solutions was tested by
substituting the designed fields back into Schro¨dinger’s equation
(eqs 2 and 3) and numerically integrating without any further
approximations to find the final statesstep 4; we will refer to
this as the “actual” state. Multiphoton excitation processes were
not included in the simulations because the control field
intensities were always less than 1010 W/cm2, even in the regime
of nearly total population transfer to the excited state. At these

Figure 3. Amplitude (solid line) of the functionB(t) and its phase
(dotted line) for a vibrational coherent state in the A state of K2. Here,
∆ ) 0.01.

Figure 4. Driving fields for generating (a) a coherent state, and (b) a
“cat” state in the A state of K2. In both cases, the dashed line is the
weak field intensity, the solid line is the strong field intensity, and the
dotted line is the phase. The peak intensities, for the strong-response
case, are (a) 3.6× 109 W/cm2 and (b) 7.6× 109 W/cm2. The weak
fields are about 2-orders of magnitude lower in intensity than the strong
fields. The target time isτ0 ) 2T, and T≈ 470 fs.
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intensities, very little population (less than 0.2%) is transferred
to higher excited states.54 Figure 5a shows the target (dashed
lines) and actual (solid lines) states in phase space for the strong-
response case. One can see that excellent overlap between the
two is obtained. In both weak- and strong-response regimes,
the analytic prediction compares favorably with the full nu-
merical results. To quantify the fidelity, we used a generalization
of the achievement factorA,34 defined byA2 ) Tr(F̂F̂T)/(Tr F̂2

Tr F̂T
2)1/2, whereF̂ is the density operator associated with the

final actual state in the upper manifold andF̂T is that of the
target state. Here,A ) 1 whenF̂ ) F̂T, even for mixed states.
In this article we deal only with pure states, so that our
achievement factor is the same as that of Krause et al.34

We obtained an achievement ofA ) 1.00 in the weak-
response regime andA ) 0.99 in the strong-response regime,
indicating that the target state was obtained with very high
accuracy in both cases. The actual depletions accomplished were
1% (weak response) and 96% (strong response).

For our second test case, we used eq 13 to design a field that
generates a Schro¨dinger “cat” state1,55-57 in the excited electronic
state. This state corresponds to a coherent superposition of two
classically distinguishable quasi-coherent states: the nuclei are
simultaneously localized at both inner and outer turning points
of their trajectories. Here,bj

(T)e-iωejτ0 ) {∆[νjj exp(-νj)/j!]}1/2

[(-1)j + 1] and as before,j ) 0, 1, ...,M; νj ) 10; andτ0 ) 2T.
The field that generates such a distribution is shown in Figure
4b for both weak and strong excitation regimes (witht0 ) -3.3
T). As one would expect, two pulses are necessary to produce

this state.1,55-57 The second pulse arrives approximately a time
T/2 after the first pulse and creates a second wavepacket, of
identical configuration space structure to the first. This second
wavepacket interferes with the first one, cancelling the popula-
tion in the odd-numbered levels. Again, the differences between
pulse shapes from the small to the large depletion case can be
explained by the smaller absorption seen by the second pulse,
and the rapid depletion of the ground state during each pulse.
The difference in shape of the two pulses in the weak-response
regime is due to the anharmonicity of the potential, meaning
that the wavepacket changes shape as it propagates toward the
outer turning point. Figure 5b shows the target (dashed lines)
and actual (solid lines) states in phase space for the strong-
response case. Again, very good overlap between the two is
achieved. Here,A ) 1.00 and actual depletion 1% in the weak-
response case; andA ) 0.94 and actual depletion 94% in the
strong-response case.

Contrary to the first test case, the strong-response pulses for
generating “cat” states do not have to be necessarily very long
in order to avoid population trapping. That is because the
boundary between the two regimes of excitation, weak and
strong, is not a clear one. In the first case, a single pulse depletes
the ground state by 96%, whereas in this second case, the first
pulse depletes the ground state by less than 60%. It is very
difficult to tell exactly when population trapping will become
a problem; one has to go through the five steps of the recipe,
until the appropriate driving field is found. Note, however, that
the recipe involves only a single integration of Schro¨dinger’s
equation using a prescribed field (in order to determine the
fidelity of the final state); a step which is found in all iterative
methods as well.

B. Molecular Iodine. The B state of an iodine molecule is
more anharmonic than the A state of a potassium molecule.
Also, the Franck-Condon factors for transitions between the
B state and the ground vibrational-electronic state are centered
around the vibrational numberj ) 30, making the vibrational
frequencies’ spacing even more irregular. As a consequence,
the electronic response function is wider than that for K2 and
its several impulses are more separated from one another in
time. In this case, the driving field can actually be longer than
a vibrational period without causing Rabi cycling between the
X and B states.

For the numerical simulations, we again took the dipole
moment to be independent of internuclear separation with a
value of 1 D, at the Franck-Condon region.58 Higher lying
electronic states were not included in the simulations because
the control field intensities were always less than 3.5× 1012

W/cm2.34 The eigenfrequencies and the Franck-Condon factors
for the X and B states were calculated from the potentials of
ref 35.

As a target, we chose here the “molecular reflectron” wave
packet.33,34 Here, the excited wavepacket must reflect off the
potential barrier, at the outer turning point, before it reaches its
target shape: a localized Gaussian wavepacket with a small
negative momentum. Figure 6 showsB(t) for this target.

Say we first choose the narrow impulse ofB(t) corresponding
to t0 ) -1.6T. This impulse should yield a smooth pulse that
is well restricted to one vibrational periodT. However, upon
substitution into Schro¨dinger’s equation, this driving pulse yields
an achievement factor ofA ) 0.64 and a depletion of only 82%,
in the strong-response regime, requiring us to take step 5 of
our recipe. Here, the designed pulse is not long enough to
completely avoid population trapping in the ground electronic

Figure 5. Phase-space representation of the target (dashed lines) and
the “actual” (solid lines) for (a) a coherent state, and (b) a “cat” state
in the A state of K2, in the strong-response regime. Here, we plotted
the Wigner function:W(r,p) ) ∫0

∞ dx ψ*( r - x/2)ψ(r + x/2) e-isp/p

whereψ(r) is the wave function of either the target or “actual” states.
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state. Figure 7a shows the weak and strong fields evaluated with
the impulse ofB(t) corresponding tot0 ) 0.25T. The weak-
response solution shown in Figure 7 is remarkably similar to
that shown in Figure 6 of Krause et al.33 The achievement factors
we get from numerically integrating Schro¨dinger’s equation are
also quite similar:A ) 0.98 in the weak-response case, andA
) 0.70 in the strong-response case.34 In the weak-response
regime, the achievement factor is slightly lower than one might
expect because the approximations of eqs 5 and 8 actually
introduce a small time-dependent phase factor toh(t). As for
the low achievement of the strong-response solution, even
though the field is long enough to avoid population trapping in
the X state (the actual depletion is 96%, compared to the target
of 99%), it is not very long compared to the electronic response
function; eqs 5 and 8 are not very good approximations in this
case. However, the section ofB(t) corresponding tot0 ) -3.9T
yields a field of longer duration, resulting in a much better
achievement factor:A ) 0.96 with an actual depletion of 98%.
Figure 7b shows the calculated driving pulses in both regimes
of excitation, and Figure 8 shows the target and actual
wavepackets for this case. As indicated by the high achievement
factor, the overlap between the two (target and actual) is very
good. Figure 9 shows the temporal dynamics of the ground
vibrational states’ amplitudes. One can see that the population
in the levelsn * 0 remains nearly unchanged (zero) throughout

excitation, with at most 10% of the population going to the other
vibrational levels at one time.

The pulses shown in Figure 7a,b have chirps of opposite signs.
While the negatively chirped pulse of Figure 7a agrees with
the OCT solution found by Krause et al.,34 our results show
that a positively chirped pulse can also focus a wavepacket.
Even though the negatively chirped pulse yields a high degree
of inversion, and an achievement factor adequate for an
experiment,34 the positive chirp solution is a better choice for a
practical implementation. That is not just because it yields a
higher achievement factor, but also because population inversion
has been shown by Cao et al.51 to be more robust (to small
changes in the chirp) for positively chirped pulses.

VI. Conclusions

We have shown that the idea of restricting the driving force
to a short enough duration that the discreteness of the system’s
level structure is not resolved leads to a great simplification of
the nonlinear quantum control problem. In contrast to other
approaches to quantum control, such as OCT, this restriction
allows one to derive a simple approximate analytic solution for
the driving field. This solution, evaluated directly from the target
quantum state amplitudes in the excited manifold, holds even
in the limit of large population transfer.

The two main approximations used in finding this analytic
solution were that of a rapid electronic “response” function and
the assumption of no population trapping occurring in the ground
electronic state. These approximations were tested by substitut-

Figure 6. Amplitude (solid line) of the functionB(t), and its phase
(dotted line) for the “molecular reflectron” in the B state of I2. Here∆
) 0.99, and the vibrational period is T≈ 267 fs.

Figure 7. Driving field for creating the “molecular reflectron” in the
weak (dashed line) and strong-response (solid line) regimes for (a)t0
) 0.25T, and (b)t0 ) -3.9T. The peak intensities are (a) 3.3× 1012

W/cm2 and (b) 1.8× 1012 W/cm2 for the strong-response case. The
weak fields are about 2 orders of magnitude lower in intensity than
the strong fields. The target time isτ0 ) 2T.

Figure 8. Phase-space (Wigner) representation of the target (dashed
lines) and the “actual” (solid lines) “molecular reflectron”, in the strong-
response regime. The target state is represented by the wave function
ψ(r) ) (2πσ)-1/4 exp[-(x - xj)2/4σ + i(pj/p)(x - xj)], wherexj ) 3.72
Å, pj2/2m ) 403 cm-1, pj < 0, andσ ) 4.6 pm.

Figure 9. Ground-state depletion in the strong-response regime of I2.
The solid line is the population in leveln ) 0, and the dashed line is
the total population in the other vibrational levels of the ground
electronic state.
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ing the driving field from eq 13 in eqs 2 and 3, which were
then numerically integrated. As shown in Figures 5, 8, and 9,
the approximations seem to hold well even in the strong regime.
The key for these approximations to work is to chose among
the many possible solutions ones for which the field is long
compared to the response function, but at the same time shorter
than one vibrational period. Obviously, this limits our technique
to systems for which the duration of the electronic “response”
function is significantly shorter than one vibrational period. Also,
the family of wavepackets that are amenable to control using
our scheme is restricted to those states that are accessible by a
Franck-Condon transition from the initial ground vibronic state.
These states must also have characteristic functionsB(t) whose
impulses are longer than the electronic response function.

OCT is a more versatile technique that can be applied to a
larger variety of problems and systems than the technique
described here. For example, our technique would be very
difficult to apply to the case in which one starts from an arbitrary
population distribution in the ground electronic state. Because
we chose to work in the Schro¨dinger representation, we are also
limited to controlling only pure states. The main attraction of
our technique is that by providing a simple, approximate analytic
solution, it helps shed some light onto the physics behind the
control of diatomic molecules in the strong-response regime.
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